连云港博大机械设备制造有限公司[摘要]:本文简要介绍了变频器原理、现场安装调试情况,初步分析了变频器的节能效果,对认识了解变频器运行有一定的借鉴作用。
[关键词] 引风机 变频调速装置 控制
1、概 述
国电宣威发电有限责任公司地处云南东北部,海拔1970.6m,现有投产装机容量4×300MW。#7机组设计出力为:300MW,机炉配有两台AN31e6(u19-10)型静叶可调轴流式引风机,额定风量:321.4m3/h、全压为5452Pa,轴功率:2104kW;配用YKK800-8-W型电动机,额定功率2500kW、额定电压6kV、额定电流293A、功率因素:0.86、额定转速:746r/min,电动机无调速装置,靠改变风机静叶的角度来调节风量。
发电厂的发电负荷根据电网要求,通常在额定负荷的50%~100%之间进行调整、变化,以满足电网运行的要求;发电机输出功率的变化,锅炉系统相关设备也要随着负荷的变化作相应的调整。锅炉的送风量、引风量相应变化,引风机出力调整采用通过改变风机叶片的角度来调节。通过改变风机静叶的角度来调节风量尽管比一般采用控制入口挡板开度来实现风量的调节有一定的节能效果,但是节流损失仍然很大,特别是在低负荷运行时,电动机输出功率大量的能源消耗在挡板上,节流损失更大。其次静叶调节动作迟缓,造成机组负荷调整响应迟滞。异步电动机在启动时启动电流一般达到电动机额定电流的5-8倍,对电动机、动力电缆造成较大冲击,对厂用电系统稳定运行也有一定的影响,同时强大的冲击转矩和冲击电流,缩短了电动机和风机机械的使用寿命。
2、变频器调速节能原理
2.1 变频调速的方法
变频调速是通过改变输入到交流电机的电源频率,从而达到调节交流电动机转速的目的。根据电机学原理,交流异步电动机转速由下式确定:
n=60f(1-S)/p (1)
式中:n—电动机转速;
f—输入电源频率;
S—电动机转差率;
p—电机极对数。
由公式(1)可知,电动机的输出转速与输入的电源频率、转差率、电机的极对数有关。
交流电动机的直接调速方式主要有:
-
变极调速(调整p)
-
转子串电阻调速或串级调速或内反馈电机(调整S)
-
变频调速(调整f)
根据流体力学的基本定律可知:风机(或水泵)类设备均属平方转矩负载,其转速n与流量Q、压力(扬程)H以及轴功率P具有如下关系:
Q1/ Q2=n1/n2 (1)
H1/ H2=(n1/n2)2 (2)
P1/ P2=(n1/n2)3 (3)
式中:Q1、H1、P1—风机(或水泵)在n1转速时的流量、压力(或扬程)、轴功率;
Q2、H2、P2—风机(或水泵)在n2转速时的相似工况条件下的流量、压力(或扬程)、轴功率。
由公式(1)、(2)、(3)可知,风机(或水泵)的流量与其转速成正比,压力(或扬程)与其转速的平方成正比,轴功率与其转速的立方成正比。,当风机转速降低后,其轴功率随转速的三次方降低,驱动风机的电机所需的电功率亦可相应降低。
从上述分析可见,调速是风机节能的重要途径。采用变频调速可以实现对引风机电机转速的线性调节,通过改变电动机转速使炉膛负压、锅炉氧量等指标与引风机风量维持一定的关系。
3、高压变频调速系统应用情况
3.1 高压变频器的组成:
我公司采用北京利德华福电气技术有限公司生产的HARSVEST-A系列电压源型全数字控制变频器,高-高方式、采用H桥串联方案。额定容量:1600KVA、额定电压:6kV、额定电流:160A。高压变频器装置由变压器柜、功率柜、控制柜、刀闸切换柜四个部分组成,冷却方式采用:水空冷却系统。为单元串联多电平结构,其变频器原理方框图如图1所示。
图1单元串联多电平高压变频器原理框图
3.2 高压变频器与现场接口方案
北京利德华福电气技术有限公司的高压变频器的控制部分由高速单片机、人机界面和PLC共同构成。单片机实现PWM控制和功率单元的保护。人机界面提供友好的全中文监控界面,同时可以实现远程监控和网络化控制。内置PLC用于柜体内开关信号的逻辑处理,可以和用户现场灵活接口,满足用户的特殊需要。该变频器使用西门子S7-200系列PLC,具有较好的与DCS系统接口能力,根据风机的特性运行要求以及变频器控制的具体要求采取了相应控制方案。
1)DCS系统与变频器的接口方案
DCS系统与变频器之间的信号总共有10个,其中开关量信号8个,模拟量信号有2个。(以#1引风机为例)
序号 | DCS系统编号 | 性质 | 电气侧名称 | 备注 |
1 | IDAF-R | DI | 变频器运行 | 画面指示 |
2 | IDAF-W | DI | 变频器待机 | 画面指示 |
3 | IDAF-L | DI | 变频器轻故障 | 画面指示 |
4 | IDAF-B | DI | 变频器重故障 | 画面指示 |
5 | IDAF-BYS | DI | 变频器工频控制 | 画面指示 |
6 | IDAF-PMT | DI | 合闸允许 | 控制变频器的允许信号 |
7 | IDAF-1 | DO | 变频器启动 | DCS系统提供干接点 |
8 | IDAF-2 | DO | 变频器减速停机 | DCS系统提供干接点 |
9 | IDAF-4 | AO | 变频器控制频率指令 | DCS系统提供24V电源 |
10 | IDAF-5 | AI | 变频器频率信号反馈 | 变频器提供24V电源 |
|
|
|
|
|
2)DCS画面增加以下内容
为实现对变频引风机的启停控制及转速调节,在DCS画面上增加:
变频器启停操作功能块
用于远方启停变频器;
变频器转速控制功能块
变频器轻故障报警块
重故障报警块
工频旁路状态
FF。
3.3、变频器运行方式及控制逻辑
引风机变频器电气一次系统接线方式采用“一拖一”手动切换方式(虚线部分为新增加部分),见下图;
图2.引风机变频器一次接线图
变频器可根据运行方式需要,进行运行方式的切换,如:一台变频一台工频的运行方式和两台工频的运行方式。缺点是在进行变频器运行方式切换时,需要将机组负荷进行调整,降低负荷后,停止#1(或#2)引风机运行,方可进行引风机运行方式的切换操作。正常情况下,2台引风机投入变频调速运行方式。
变频器运行方式控制分为就地控制及远方控制两种。远程控制状态时,DCS输出的转速命令信号跟踪变频器转速反馈。就地控制时,对变频器远方操作无效。
变频器受DCS控制时分自动和手动两种方式。手动状态时,运行人员通过改变DCS操作画面转速控制块控制变频器转速,实现锅炉负压的调节。
1)引风机变频器启动的允许条件
变频器启动的前提为引风机电机6kV高压开关必须合闸即启动反馈为1。原有的风机启动条件保留下来作为引风机变频器启动的允许条件。变频器就地送来的就绪信号作为另一启动条件。
在变频器调试过程中(不论远方还是就地启动时),发现由于变频器******频率设定不得低于15Hz,否则将造成变频器功率模块“过流”,变频器跳闸;所以在电动机启动时,变频器******频率设定不得低于15Hz的限制。
总结#1、2引风机变频器启动必须具备以下3个条件:
-
#1、2引风机的6kV高压侧部分的启动反馈为1。
-
#1、2引风机的变频器就地从其PLC送来的启动就绪开关为1
-
#1、2引风机变频器的转速设定值的输出不得小于30%。
3.3引风机变频涉及相关跳闸保护方面
单侧风机的变频器跳闸后,需要联跳相应一侧的送风机。并联关相应挡板及静叶的逻辑不变。
#1、2风机的变频跳闸后由于相应的高压开关联跳,故保留原锅炉大连锁跳闸回路不变。
锅炉的安全运行是全厂动力的根本保证,虽然变频调速装置可靠,但一旦出现问题,必须确保锅炉安全运行,所以必须实现“工频—变频”运行的切换。一旦一台引风变频故障,无法在短时间内恢复,需要引风自动控制到原先的静叶来调整,在此背景和需要下,对一台引风变频停掉,用另一台引风变频运行;此时机炉负荷应保持在:180MW左右。
4、经济综合测试评价
4.1 节能效益明显
以下是7机组#1、2引风机变频器运行后,对10月16日至20日生产数据进行初步比较。
时间 (2005年10月) | 机炉 负荷 (平均MW) | 变频运行 | 工频运行 | 变频器投入前、后比较(%) |
#1引风机 | #2引风机 | #1引风机 | #2引风机 |
耗电量(kW.h) | 耗电量(kW.h) | 耗电量(kW.h) | 耗电量(kW.h) |
20 | 20.35 | 10332 | 11340 | 19908 | 19656 |
|
21 | 20.32 | 10836 | 11592 | 19908 | 19656 |
|
22 | 22.02 | 13104 | 13608 |
|
|
|
联系方式 |
|
服务电话:0518-85380391,18071666066,13775446005 |
|
邮 箱: bd@lygbd.com,940005259@qq.com |
|
公司地址:连云港市海州经济开发区创业路5号 |
|
|
|
|
|